Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753505

RESUMO

Dive capacities of air-breathing vertebrates are dictated by onboard O2 stores, suggesting that physiologic specialization of diving birds such as penguins may have involved adaptive changes in convective O2 transport. It has been hypothesized that increased hemoglobin (Hb)-O2 affinity improves pulmonary O2 extraction and enhances the capacity for breath-hold diving. To investigate evolved changes in Hb function associated with the aquatic specialization of penguins, we integrated comparative measurements of whole-blood and purified native Hb with protein engineering experiments based on site-directed mutagenesis. We reconstructed and resurrected ancestral Hb representing the common ancestor of penguins and the more ancient ancestor shared by penguins and their closest nondiving relatives (order Procellariiformes, which includes albatrosses, shearwaters, petrels, and storm petrels). These two ancestors bracket the phylogenetic interval in which penguin-specific changes in Hb function would have evolved. The experiments revealed that penguins evolved a derived increase in Hb-O2 affinity and a greatly augmented Bohr effect (i.e., reduced Hb-O2 affinity at low pH). Although an increased Hb-O2 affinity reduces the gradient for O2 diffusion from systemic capillaries to metabolizing cells, this can be compensated by a concomitant enhancement of the Bohr effect, thereby promoting O2 unloading in acidified tissues. We suggest that the evolved increase in Hb-O2 affinity in combination with the augmented Bohr effect maximizes both O2 extraction from the lungs and O2 unloading from the blood, allowing penguins to fully utilize their onboard O2 stores and maximize underwater foraging time.


Assuntos
Adaptação Fisiológica , Oxigênio/metabolismo , Oxiemoglobinas/metabolismo , Spheniscidae/fisiologia , Substituição de Aminoácidos , Animais , Oxiemoglobinas/química , Oxiemoglobinas/genética , Filogenia , Conformação Proteica , Engenharia de Proteínas , Spheniscidae/sangue , Spheniscidae/classificação
2.
Sci Rep ; 10(1): 19474, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173126

RESUMO

Using satellite imagery, drone imagery, and ground counts, we have assembled the first comprehensive global population assessment of Chinstrap penguins (Pygoscelis antarctica) at 3.42 (95th-percentile CI: [2.98, 4.00]) million breeding pairs across 375 extant colonies. Twenty-three previously known Chinstrap penguin colonies are found to be absent or extirpated. We identify five new colonies, and 21 additional colonies previously unreported and likely missed by previous surveys. Limited or imprecise historical data prohibit our assessment of population change at 35% of all Chinstrap penguin colonies. Of colonies for which a comparison can be made to historical counts in the 1980s, 45% have probably or certainly declined and 18% have probably or certainly increased. Several large colonies in the South Sandwich Islands, where conditions apparently remain favorable for Chinstrap penguins, cannot be assessed against a historical benchmark. Our population assessment provides a detailed baseline for quantifying future changes in Chinstrap penguin abundance, sheds new light on the environmental drivers of Chinstrap penguin population dynamics in Antarctica, and contributes to ongoing monitoring and conservation efforts at a time of climate change and concerns over declining krill abundance in the Southern Ocean.


Assuntos
Conservação dos Recursos Naturais/métodos , Comportamento Alimentar/fisiologia , Imagens de Satélites/métodos , Spheniscidae/fisiologia , Distribuição Animal , Animais , Regiões Antárticas , Mudança Climática , Euphausiacea/fisiologia , Geografia , Ilhas , Densidade Demográfica , Dinâmica Populacional , Estações do Ano , Spheniscidae/classificação
4.
Viruses ; 12(8)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781620

RESUMO

Circoviruses infect a variety of animal species and have small (~1.8-2.2 kb) circular single-stranded DNA genomes. Recently a penguin circovirus (PenCV) was identified associated with an Adélie Penguin (Pygoscelis adeliae) with feather disorder and in the cloacal swabs of three asymptomatic Adélie Penguins at Cape Crozier, Antarctica. A total of 75 cloacal swab samples obtained from adults and chicks of three species of penguin (genus: Pygoscelis) from seven Antarctic breeding colonies (South Shetland Islands and Western Antarctic Peninsula) in the 2015-2016 breeding season were screened for PenCV. We identified new variants of PenCV in one Adélie Penguin and one Chinstrap Penguin (Pygoscelis antarcticus) from Port Charcot, Booth Island, Western Antarctic Peninsula, a site home to all three species of Pygoscelid penguins. These two PenCV genomes (length of 1986 nucleotides) share > 99% genome-wide nucleotide identity with each other and share ~87% genome-wide nucleotide identity with the PenCV sequences described from Adélie Penguins at Cape Crozier ~4400 km away in East Antarctica. We did not find any evidence of recombination among PenCV sequences. This is the first report of PenCV in Chinstrap Penguins and the first detection outside of Ross Island, East Antarctica. Given the limited knowledge on Antarctic animal viral diversity, future samples from Antarctic wildlife should be screened for these and other viruses to determine the prevalence and potential impact of viral infections.


Assuntos
Circovirus/genética , Circovirus/isolamento & purificação , Genoma Viral , Spheniscidae/virologia , Animais , Regiões Antárticas , Doenças das Aves/virologia , Circovirus/classificação , Cloaca/virologia , DNA Viral/genética , Filogenia , Spheniscidae/classificação
5.
Proc Natl Acad Sci U S A ; 117(36): 22303-22310, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817535

RESUMO

Penguins are the only extant family of flightless diving birds. They currently comprise at least 18 species, distributed from polar to tropical environments in the Southern Hemisphere. The history of their diversification and adaptation to these diverse environments remains controversial. We used 22 new genomes from 18 penguin species to reconstruct the order, timing, and location of their diversification, to track changes in their thermal niches through time, and to test for associated adaptation across the genome. Our results indicate that the penguin crown-group originated during the Miocene in New Zealand and Australia, not in Antarctica as previously thought, and that Aptenodytes is the sister group to all other extant penguin species. We show that lineage diversification in penguins was largely driven by changing climatic conditions and by the opening of the Drake Passage and associated intensification of the Antarctic Circumpolar Current (ACC). Penguin species have introgressed throughout much of their evolutionary history, following the direction of the ACC, which might have promoted dispersal and admixture. Changes in thermal niches were accompanied by adaptations in genes that govern thermoregulation and oxygen metabolism. Estimates of ancestral effective population sizes (Ne ) confirm that penguins are sensitive to climate shifts, as represented by three different demographic trajectories in deeper time, the most common (in 11 of 18 penguin species) being an increased Ne between 40 and 70 kya, followed by a precipitous decline during the Last Glacial Maximum. The latter effect is most likely a consequence of the overall decline in marine productivity following the last glaciation.


Assuntos
Evolução Molecular , Genoma/genética , Spheniscidae , Animais , Regiões Antárticas , Austrália , Mudança Climática , Ecossistema , Estudo de Associação Genômica Ampla , Nova Zelândia , Filogenia , Seleção Genética/genética , Spheniscidae/classificação , Spheniscidae/genética , Spheniscidae/fisiologia
6.
PLoS One ; 15(1): e0226439, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31910443

RESUMO

Although many studies have documented the effects of demographic bottlenecks on the genetic diversity of natural populations, there is conflicting evidence of the roles that genetic drift and selection may play in driving changes in genetic variation at adaptive loci. We analyzed genetic variation at microsatellite and mitochondrial loci in conjunction with an adaptive MHC class II locus in the Galápagos penguin (Spheniscus mendiculus), a species that has undergone serial demographic bottlenecks associated with El Niño events through its evolutionary history. We compared levels of variation in the Galápagos penguin to those of its congener, the Magellanic penguin (Spheniscus magellanicus), which has consistently maintained a large population size and thus was used as a non-bottlenecked control. The comparison of neutral and adaptive markers in these two demographically distinct species allowed assessment of the potential role of balancing selection in maintaining levels of MHC variation during bottleneck events. Our analysis suggests that the lack of genetic diversity at both neutral and adaptive loci in the Galápagos penguin likely resulted from its restricted range, relatively low abundance, and history of demographic bottlenecks. The Galápagos penguin revealed two MHC alleles, one mitochondrial haplotype, and six alleles across five microsatellite loci, which represents only a small fraction of the diversity detected in Magellanic penguins. Despite the decreased genetic diversity in the Galápagos penguin, results revealed signals of balancing selection at the MHC, which suggest that selection can mitigate some of the effects of genetic drift during bottleneck events. Although Galápagos penguin populations have persisted for a long time, increased frequency of El Niño events due to global climate change, as well as the low diversity exhibited at immunological loci, may put this species at further risk of extinction.


Assuntos
Deriva Genética , Variação Genética , Genética Populacional , Antígenos de Histocompatibilidade Classe II/genética , Seleção Genética , Spheniscidae/genética , Animais , DNA Mitocondrial/genética , Demografia , Evolução Molecular , Genótipo , Repetições de Microssatélites , Spheniscidae/classificação
7.
Acta Parasitol ; 65(2): 525-534, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31919798

RESUMO

PURPOSE: Cardiocephaloides is a small genus of strigeid digeneans with an essentially cosmopolitan distribution. Most members of Cardiocephaloides are found in larid birds, however, Cardiocephaloides physalis is an exception and parasitizes penguins in some coastal regions of South America and South Africa. No prior molecular phylogenetic studies have included DNA sequence data of C. physalis. Herein, we provide molecular phylogenetic analyses of Cardiocephaloides using DNA sequences from five species of these strigeids. METHODS: Adult Cardiocephaloides spp. were obtained from larid birds and penguins collected from 3 biogeographical realms (Palearctic, Nearctic and Neotropics). We have generated sequences of the complete ITS region and partial 28S gene of the nuclear ribosomal DNA, along with partial sequences of the mitochondrial CO1 gene for C. physalis, C. medioconiger and the type species of the genus, C. longicollis and used them for phylogenetic inference. RESULTS: Cardiocephaloides spp. appeared as a 100% supported clade in the phylogenetic tree based on 28S sequences. The position of C. physalis varied between the phylogenetic trees based on the relatively conservative 28S gene on one hand, and variable ITS1 and COI sequences on the other. Cardiocephaloides physalis was nested within the clade of Cardiocephaloides spp. in the 28S tree and appeared as the sister group to the remaining members of the genus in the ITS1 region and COI trees. We detected 0.4-1.6% interspecific divergence in 28S, 1.9-6.9% in the ITS region and 8.7-11.8% in CO1 sequences of Cardiocephaloides spp. Our 28S sequence of C. physalis from South America and a shorter sequence from Africa available in the GenBank were identical. CONCLUSION: Cardiocephaloides as represented in the currently available dataset is monophyletic with C. physalis parasitism in penguins likely resulting from a secondary host-switching event. Identical 28S sequences of C. physalis from South America and Africa cautiously confirm the broad distribution of this species, although comparison of faster mutating genes (e. g., CO1) is recommended for a better substantiated conclusion.


Assuntos
Doenças das Aves/parasitologia , Spheniscidae/parasitologia , Trematódeos/classificação , Infecções por Trematódeos/veterinária , Animais , Sequência de Bases , Teorema de Bayes , Charadriiformes/parasitologia , Chile , DNA de Helmintos/química , DNA Mitocondrial/química , DNA Ribossômico/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Cadeias de Markov , Método de Monte Carlo , Filogenia , RNA Ribossômico 28S/genética , Alinhamento de Sequência , Spheniscidae/classificação , Trematódeos/genética , Infecções por Trematódeos/parasitologia
8.
J Hered ; 110(7): 801-817, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31737899

RESUMO

Rockhopper penguins are delimited as 2 species, the northern rockhopper (Eudyptes moseleyi) and the southern rockhopper (Eudyptes chrysocome), with the latter comprising 2 subspecies, the western rockhopper (Eudyptes chrysocome chrysocome) and the eastern rockhopper (Eudyptes chrysocome filholi). We conducted a phylogeographic study using multilocus data from 114 individuals sampled across 12 colonies from the entire range of the northern/southern rockhopper complex to assess potential population structure, gene flow, and species limits. Bayesian and likelihood methods with nuclear and mitochondrial DNA, including model testing and heuristic approaches, support E. moseleyi and E. chrysocome as distinct species lineages with a divergence time of 0.97 Ma. However, these analyses also indicated the presence of gene flow between these species. Among southern rockhopper subspecies, we found evidence of significant gene flow and heuristic approaches to species delimitation based on the genealogical diversity index failed to delimit them as species. The best-supported population models for the southern rockhoppers were those where E. c. chrysocome and E. c. filholi were combined into a single lineage or 2 lineages with bidirectional gene flow. Additionally, we found that E. c. filholi has the highest effective population size while E. c. chrysocome showed similar effective population size to that of the endangered E. moseleyi. We suggest that the current taxonomic definitions within rockhopper penguins be upheld and that E. chrysocome populations, all found south of the subtropical front, should be treated as a single taxon with distinct management units for E. c. chrysocome and E. c. filholi.


Assuntos
Genética Populacional , Filogenia , Filogeografia , Spheniscidae/classificação , Spheniscidae/genética , Animais , Densidade Demográfica
9.
PLoS Biol ; 17(10): e3000448, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31577791

RESUMO

The development of an organism involves the formation of patterns from initially homogeneous surfaces in a reproducible manner. Simulations of various theoretical models recapitulate final states of natural patterns, yet drawing testable hypotheses from those often remains difficult. Consequently, little is known about pattern-forming events. Here, we surveyed plumage patterns and their emergence in Galliformes, ratites, passerines, and penguins, together representing the three major taxa of the avian phylogeny, and built a unified model that not only reproduces final patterns but also intrinsically generates shared and varying directionality, sequence, and duration of patterning. We used in vivo and ex vivo experiments to test its parameter-based predictions. We showed that directional and sequential pattern progression depends on a species-specific prepattern: an initial break in surface symmetry launches a travelling front of sharply defined, oriented domains with self-organising capacity. This front propagates through the timely transfer of increased cell density mediated by cell proliferation, which controls overall patterning duration. These results show that universal mechanisms combining prepatterning and self-organisation govern the timely emergence of the plumage pattern in birds.


Assuntos
Galliformes/genética , Modelos Estatísticos , Paleógnatas/genética , Passeriformes/genética , Pigmentação/genética , Spheniscidae/genética , Animais , Cor , Embrião não Mamífero , Plumas/citologia , Plumas/crescimento & desenvolvimento , Plumas/metabolismo , Galliformes/anatomia & histologia , Galliformes/classificação , Galliformes/crescimento & desenvolvimento , Padrões de Herança , Morfogênese/genética , Paleógnatas/anatomia & histologia , Paleógnatas/classificação , Paleógnatas/crescimento & desenvolvimento , Passeriformes/anatomia & histologia , Passeriformes/classificação , Passeriformes/crescimento & desenvolvimento , Filogenia , Pele/citologia , Pele/crescimento & desenvolvimento , Pele/metabolismo , Spheniscidae/anatomia & histologia , Spheniscidae/classificação , Spheniscidae/crescimento & desenvolvimento
10.
Mol Phylogenet Evol ; 139: 106563, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31323335

RESUMO

The study of systematics in wide-ranging seabirds can be challenging due to the vast geographic scales involved, as well as the possible discordance between molecular, morphological and behavioral data. In the Southern Ocean, macaroni penguins (Eudyptes chrysolophus) are distributed over a circumpolar range including populations in Antarctic and sub-Antarctic areas. Macquarie Island, in its relative isolation, is home to a closely related endemic taxon - the royal penguin (Eudyptes schlegeli), which is distinguishable from E. chrysolophus mainly by facial coloration. Although these sister taxa are widely accepted as representing distinct species based on morphological grounds, the extent of their genome-wide differentiation remains uncertain. In this study, we use genome-wide Single Nucleotide Polymorphisms to test genetic differentiation between these geographically isolated taxa and evaluate the main drivers of population structure among breeding colonies of macaroni/royal penguins. Genetic similarity observed between macaroni and royal penguins suggests they constitute a single evolutionary unit. Nevertheless, royal penguins exhibited a tendency to cluster only with macaroni individuals from Kerguelen Island, suggesting that dispersal occurs mainly between these neighboring colonies. A stepping stone model of differentiation of macaroni/royal populations was further supported by a strong pattern of isolation by distance detected across its whole distribution range, possibly driven by large geographic distances between colonies as well as natal philopatry. However, we also detected intraspecific genomic differentiation between Antarctic and sub-Antarctic populations of macaroni penguins, highlighting the role of environmental factors together with geographic distance in the processes of genetic differentiation between Antarctic and sub-Antarctic waters.


Assuntos
Variação Genética , Spheniscidae/genética , Animais , Regiões Antárticas , Análise por Conglomerados , Genoma , Filogenia , Polimorfismo de Nucleotídeo Único , Spheniscidae/classificação
11.
PLoS One ; 14(5): e0215293, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075106

RESUMO

The upwelling hypothesis has been proposed to explain reduced or lack of population structure in seabird species specialized in food resources available at cold-water upwellings. However, population genetic structure may be challenging to detect in species with large population sizes, since variation in allele frequencies are more robust under genetic drift. High gene flow among populations, that can be constant or pulses of migration in a short period, may also decrease power of algorithms to detect genetic structure. Penguin species usually have large population sizes, high migratory ability but philopatric behavior, and recent investigations debate the existence of subtle population structure for some species not detected before. Previous study on Humboldt penguins found lack of population genetic structure for colonies of Punta San Juan and from South Chile. Here, we used mtDNA and nuclear markers (10 microsatellites and RAG1 intron) to evaluate population structure for 11 main breeding colonies of Humboldt penguins, covering the whole spatial distribution of this species. Although mtDNA failed to detect population structure, microsatellite loci and nuclear intron detected population structure along its latitudinal distribution. Microsatellite showed significant Rst values between most of pairwise locations (44 of 56 locations, Rst = 0.003 to 0.081) and 86% of individuals were assigned to their sampled colony, suggesting philopatry. STRUCTURE detected three main genetic clusters according to geographical locations: i) Peru; ii) North of Chile; and iii) Central-South of Chile. The Humboldt penguin shows signal population expansion after the Last Glacial Maximum (LGM), suggesting that the genetic structure of the species is a result of population dynamics and foraging colder water upwelling that favor gene flow and phylopatric rate. Our findings thus highlight that variable markers and wide sampling along the species distribution are crucial to better understand genetic population structure in animals with high dispersal ability.


Assuntos
DNA Mitocondrial/genética , Técnicas de Genotipagem/veterinária , Spheniscidae/classificação , Algoritmos , Animais , Chile , Conservação dos Recursos Naturais , Fluxo Gênico , Deriva Genética , Genética Populacional , Repetições de Microssatélites , Peru , Densidade Demográfica , Dinâmica Populacional , Spheniscidae/genética
12.
PLoS One ; 14(5): e0216565, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31067284

RESUMO

In many seabirds, individuals abstain from eating during the moult period. Penguins have an intense moult that lasts for weeks, during which they are confined to land. Despite the importance for survival, it is still unclear how the faecal microbiota of Antarctic penguins changes in response to the moult fast. Here, we investigated the faecal microbiota of chinstrap (Pygoscelis antarcticus) and gentoo penguins (Pygoscelis papua) on King George Island, Antarctica. The bacterial community compositions during the feeding and moulting stages were compared for both species using bacterial 16S rRNA gene amplicon on an Illumina MiSeq platform. Our results showed that the moult fast altered the bacterial community structures in both penguin species. Interestingly, the bacterial community composition shifted in the same direction in response to the moult fast but formed two distinct clusters that were specific to each penguin species. A significant increase in bacterial diversity was observed in gentoo penguins, whereas no such change was observed for chinstrap penguins. By analysing the contribution of the ecological processes that determine bacterial community assembly, we observed that processes regulating community turnover were considerably different between the feeding and moulting stages for each penguin. At the phylum level, the relative abundances of Fusobacteria, Firmicutes and Proteobacteria were dominant in chinstrap penguins, and no significant changes were detected in these phyla between the feeding and moulting periods. Our results suggest that moult fast-induced changes in the faecal microbiota occur in both species.


Assuntos
Fezes/microbiologia , Microbiota/genética , Muda/fisiologia , Spheniscidae/microbiologia , Spheniscidae/fisiologia , Animais , Regiões Antárticas , RNA Ribossômico 16S/genética , Spheniscidae/classificação
13.
Mol Phylogenet Evol ; 131: 72-79, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30367976

RESUMO

Human impacts have substantially reduced avian biodiversity in many parts of the world, particularly on isolated islands of the Pacific Ocean. The New Zealand archipelago, including its five subantarctic island groups, holds breeding grounds for a third of the world's penguin species, including several representatives of the diverse crested penguin genus Eudyptes. While this species-rich genus has been little studied genetically, recent population estimates indicate that several Eudyptes taxa are experiencing demographic declines. Although crested penguins are currently limited to southern regions of the New Zealand archipelago, prehistoric fossil and archaeological deposits suggest a wider distribution during prehistoric times, with breeding ranges perhaps extending to the North Island. Here, we analyse ancient, historic and modern DNA sequences to explore two hypotheses regarding the recent history of Eudyptes in New Zealand, testing for (1) human-driven extinction of Eudyptes lineages; and (2) reduced genetic diversity in surviving lineages. From 83 prehistoric bone samples, each tentatively identified as 'Eudyptes spp.', we genetically identified six prehistoric penguin taxa from mainland New Zealand, including one previously undescribed genetic lineage. Moreover, our Bayesian coalescent analyses indicated that, while the range of Fiordland crested penguin (E. pachyrhynchus) may have contracted markedly over the last millennium, genetic DNA diversity within this lineage has remained relatively constant. This result contrasts with human-driven biodiversity reductions previously detected in several New Zealand coastal vertebrate taxa.


Assuntos
DNA Antigo/análise , Variação Genética , Filogenia , Spheniscidae/genética , Animais , Teorema de Bayes , Biodiversidade , Complexo IV da Cadeia de Transporte de Elétrons/genética , Fósseis , Haplótipos/genética , Humanos , Nova Zelândia , Oceano Pacífico , Dinâmica Populacional , Spheniscidae/classificação , Fatores de Tempo
14.
Mol Ecol ; 27(23): 4680-4697, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30308702

RESUMO

The mechanisms that determine patterns of species dispersal are important factors in the production and maintenance of biodiversity. Understanding these mechanisms helps to forecast the responses of species to environmental change. Here, we used a comparative framework and genomewide data obtained through RAD-Seq to compare the patterns of connectivity among breeding colonies for five penguin species with shared ancestry, overlapping distributions and differing ecological niches, allowing an examination of the intrinsic and extrinsic barriers governing dispersal patterns. Our findings show that at-sea range and oceanography underlie patterns of dispersal in these penguins. The pelagic niche of emperor (Aptenodytes forsteri), king (A. patagonicus), Adélie (Pygoscelis adeliae) and chinstrap (P. antarctica) penguins facilitates gene flow over thousands of kilometres. In contrast, the coastal niche of gentoo penguins (P. papua) limits dispersal, resulting in population divergences. Oceanographic fronts also act as dispersal barriers to some extent. We recommend that forecasts of extinction risk incorporate dispersal and that management units are defined by at-sea range and oceanography in species lacking genetic data.


Assuntos
Distribuição Animal , Genética Populacional , Genômica , Spheniscidae/genética , Animais , Regiões Antárticas , Ecossistema , Fluxo Gênico , Variação Genética , Técnicas de Genotipagem , Filogenia , Polimorfismo de Nucleotídeo Único , Spheniscidae/classificação
15.
J Hered ; 109(6): 653-662, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30010804

RESUMO

Genealogical relationships among colony members, inbreeding status, and presence of hybrids are crucial data that can assist zoo curators in captive colony management and decision-making on relocation for reproduction. This study employed molecular markers to study a large colony (n = 56) of African Penguin hosted in an Italian biopark. A panel of 15 STRs (single tandem repeats) was selected, and genotype data were analyzed using COLONY software to determine parentage relationships and compare the existing studbook information to a pedigree built from genetic analyses. The existence of extra-pair mating and the presence of hybrids were investigated: discrepancies in kinship relationships emerged following molecular parentage analysis and 10 unknown genetic relationships were revealed. Infidelity of one member of the pair was observed in 6 cases and extra-pair copulation was assessed by genetic analysis in 2 episodes. One member of the colony was found to be a hybrid (S. demersus × S. humboldti); his progeny, derived by extra-pair copulation, was traced. Three other hidden hybrids were discovered and assessed using the identified candidate private alleles. Overall, our results demonstrate that molecular methods to confirm parentage and analyze relatedness among colony members are a valuable tool to complement studbook-based genetic management of African penguin captive populations. Because a variety of behavioral dynamics (e.g., extra-pair mating) can make observations ineffective in some species and because molecular markers outperform studbook in identifying the presence of hybrids, reliance on studbook information alone is not recommended.


Assuntos
Hibridização Genética , Spheniscidae/genética , Animais , DNA Mitocondrial , Feminino , Marcadores Genéticos , Técnicas de Genotipagem , Masculino , Análise de Sequência de DNA , Análise para Determinação do Sexo , Spheniscidae/classificação
16.
Mol Phylogenet Evol ; 118: 47-53, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28943375

RESUMO

Carotenoids have important roles in bird behavior, including pigmentation for sexual signaling and improving color vision via retinal oil droplets. Yellow carotenoids are diet-derived, but red carotenoids (ketocarotenoids) are typically synthesized from yellow precursors via a carotenoid ketolase. Recent research on passerines has provided evidence that a cytochrome p450 enzyme, CYP2J19, is responsible for this reaction, though it is unclear if this function is phylogenetically restricted. Here I provide evidence that CYP2J19 is the carotenoid ketolase common to Aves using the genomes of 65 birds and the retinal transcriptomes of 15 avian taxa. CYP2J19 is functionally intact and robustly transcribed in all taxa except for several species adapted to foraging in dim light conditions. Two penguins, an owl and a kiwi show evidence of genetic lesions and relaxed selection in their genomic copy of CYP2J19, and six owls show evidence of marked reduction in CYP2J19 retinal transcription compared to nine diurnal avian taxa. Furthermore, one of the owls appears to transcribe a CYP2J19 pseudogene. Notably, none of these taxa are known to use red carotenoids for sexual signaling and several species of owls and penguins represent the only birds known to completely lack red retinal oil droplets. The remaining avian taxa belong to groups known to possess red oil droplets, are known or expected to deposit red carotenoids in skin and/or plumage, and/or frequently forage in bright light. The loss and reduced expression of CYP2J19 is likely an adaptation to maximize retinal sensitivity, given that oil droplets reduce the amount of light available to the retina.


Assuntos
Aves/classificação , Carotenoides/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Spheniscidae/classificação , Estrigiformes/classificação , Animais , Sequência de Bases , Aves/genética , Sistema Enzimático do Citocromo P-450/classificação , Bases de Dados Genéticas , Evolução Molecular , Filogenia , Retina/metabolismo , Spheniscidae/metabolismo , Estrigiformes/metabolismo
17.
Arq. bras. med. vet. zootec. (Online) ; 70(4): 1195-1202, jul.-ago. 2018. tab, ilus
Artigo em Português | LILACS, VETINDEX | ID: biblio-946404

RESUMO

O pinguim-de-magalhães é uma ave marinha de porte médio, de origem do hemisfério sul, com grandes colônias próximas à Patagônia. Em certas épocas do ano, alguns exemplares aparecem no litoral brasileiro, devido ao desvio de rotas de caça, e alguns indivíduos não conseguem retornar por debilidades na saúde. Foram utilizados 34 exemplares de Spheniscus magellanicus que vieram a óbito no litoral do estado de Espírito Santo. O presente estudo analisou a morfologia de câmaras e paredes cardíacas, valvas e artérias da base. Os fragmentos dessas regiões foram analisados histologicamente com coloração hematoxilina-eosina (HE) e Tricrômico de Gomori (TG), além da coloração Picrosirius Red (PSR) sob luz polarizada, visando observar, principalmente, a composição do tipo de colágeno existente em cada região descrita. Entre os 34 exemplares, nenhum apresentou discrepância em relação a sua morfologia. A tipificação do colágeno dessas regiões pelas colorações TG e PSR sob luz polarizada demonstrou a presença do colágeno tipo I em maior evidência que o tipo III, encontrada na maioria das estruturas, o que atribuiu a aparência avermelhada intensa a quase todas elas. Pode-se concluir que a anatomia cardíaca do pinguim-de-magalhães é semelhante à de outras aves, com predominância do colágeno do tipo I.(AU)


Magellanic penguin is medium-sized seabird originated from southern hemisphere with colonies near Patagonia. At certain times of the year in Brazilian coast, a few penguins lose their hunting routes and can´t return because they are very sick. Thirty-four penguins died in Espírito Santo´s coast. This study analyzed the cardiac morphology and morph metric of heart chambers and walls, valves, and arteries of the cardiac base. These parts were analysed and stained by Hematoxilin and eosin and Gomori´s trichrome. Mainly targeting the collagen´s composition in each described part the Picru-sirius Red´s stain under polarized light was used. Among thirty-four penguin hearts, none presented discrepancy in morphology, they were all very similar. The characterization of collagen by Picrusirius Red stain highlighted type 1 collagen in comparison to type 3 collagen in most structures, giving a more reddish appearance in almost of them. In conclusion, the cardiac anatomy of the Magellanic Penguin is similar to that of other birds, with a predominance of type I collagen.(AU)


Assuntos
Animais , Spheniscidae/anatomia & histologia , Spheniscidae/classificação , Coração
18.
Syst Biol ; 66(1): 57-73, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28173531

RESUMO

The total-evidence approach to divergence time dating uses molecular and morphological data from extant and fossil species to infer phylogenetic relationships, species divergence times, and macroevolutionary parameters in a single coherent framework. Current model-based implementations of this approach lack an appropriate model for the tree describing the diversification and fossilization process and can produce estimates that lead to erroneous conclusions. We address this shortcoming by providing a total-evidence method implemented in a Bayesian framework. This approach uses a mechanistic tree prior to describe the underlying diversification process that generated the tree of extant and fossil taxa. Previous attempts to apply the total-evidence approach have used tree priors that do not account for the possibility that fossil samples may be direct ancestors of other samples, that is, ancestors of fossil or extant species or of clades. The fossilized birth­death (FBD) process explicitly models the diversification, fossilization, and sampling processes and naturally allows for sampled ancestors. This model was recently applied to estimate divergence times based on molecular data and fossil occurrence dates. We incorporate the FBD model and a model of morphological trait evolution into a Bayesian total-evidence approach to dating species phylogenies. We apply this method to extant and fossil penguins and show that the modern penguins radiated much more recently than has been previously estimated, with the basal divergence in the crown clade occurring at ∼12.7 ∼12.7 Ma and most splits leading to extant species occurring in the last 2 myr. Our results demonstrate that including stem-fossil diversity can greatly improve the estimates of the divergence times of crown taxa. The method is available in BEAST2 (version 2.4) software www.beast2.org with packages SA (version at least 1.1.4) and morph-models (version at least 1.0.4) installed.


Assuntos
Modelos Biológicos , Filogenia , Spheniscidae/classificação , Animais , Teorema de Bayes , Fósseis , Especiação Genética , Spheniscidae/anatomia & histologia , Spheniscidae/genética , Fatores de Tempo
19.
Naturwissenschaften ; 104(3-4): 9, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28233039

RESUMO

We describe leg bones of a giant penguin from the mid-Paleocene Waipara Greensand of New Zealand. The specimens were found at the type locality of Waimanu manneringi and together with this species they constitute the oldest penguin fossils known to date. Tarsometatarsus dimensions indicate a species that reached the size of Anthropornis nordenskjoeldi, one of the largest known penguin species. Stem group penguins therefore attained a giant size very early in their evolution, with this gigantism existing for more than 30 million years. The new fossils are from a species that is phylogenetically more derived than Waimanu, and the unexpected coexistence of Waimanu with more derived stem group Sphenisciformes documents a previously unknown diversity amongst the world's oldest penguins. The characteristic tarsometatarsus shape of penguins evolved early on, and the significant morphological disparity between Waimanu and the new fossil conflicts with recent Paleocene divergence estimates for penguins, suggesting an older, Late Cretaceous, origin.


Assuntos
Biodiversidade , Fósseis , Filogenia , Spheniscidae/anatomia & histologia , Spheniscidae/classificação , Animais , Tamanho Corporal , Ossos da Perna/anatomia & histologia , Nova Zelândia
20.
Mol Phylogenet Evol ; 107: 486-498, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27940333

RESUMO

Two main hypotheses have been debated about the biogeography of the Southern Ocean: (1) the Antarctic Polar Front (APF), acting as a barrier between Antarctic and sub-Antarctic provinces, and (2) the Antarctic Circumpolar Current (ACC), promoting gene flow among sub-Antarctic areas. The Gentoo penguin is distributed throughout these two provinces, separated by the APF. We analyzed mtDNA (HVR1) and 12 microsatellite loci of 264 Gentoo penguins, Pygoscelis papua, from 12 colonies spanning from the Western Antarctic Peninsula and the South Shetland Islands (WAP) to the sub-Antarctic Islands (SAI). While low genetic structure was detected among WAP colonies (mtDNA ФST=0.037-0.133; microsatellite FST=0.009-0.063), high differentiation was found between all SAI and WAP populations (mtDNA ФST=0.678-0.930; microsatellite FST=0.110-0.290). These results suggest that contemporary dispersal around the Southern Ocean is very limited or absent. As predicted, the APF appears to be a significant biogeographical boundary for Gentoo penguin populations; however, the ACC does not promote connectivity in this species. Our data suggest demographic expansion in the WAP during the last glacial maximum (LGM, about 20kya), but stability in SAI. Phylogenetic analyses showed a deep divergence between populations from the WAP and those from the SAI. Therefore, taxonomy should be further revised. The Crozet Islands resulted as a basal clade (3.57Mya), followed by the Kerguelen Islands (2.32Mya) as well as a more recent divergence between the Falkland/Malvinas Islands and the WAP (1.27Mya). Historical isolation, local adaptation, and past climate scenarios of those Evolutionarily Significant Units may have led to different potentials to respond to climate changes.


Assuntos
Variação Genética , Oceanos e Mares , Filogeografia , Spheniscidae/classificação , Animais , DNA Mitocondrial/genética , Demografia , Genética Populacional , Repetições de Microssatélites/genética , Filogenia , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...